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1
METHOD AND SYSTEM FOR DISTRIBUTING
RESOURCE-AVAILABILITY INFORMATION
WITHIN A DISTRUBITED COMPUTER
SYSTEM

TECHNICAL FIELD

The current application is directed to configuration and
management of computer systems that include multiple, dis-
crete computer systems interconnected by electronic commu-
nications and, in particular, to methods and systems for dis-
tributing resource-availability information within the
distributed computer system to facilitate various computa-
tional tasks, including configuration and management tasks.

BACKGROUND

During the past 60 years, computers have evolved from
huge, single-processor machines that were capable of execut-
ing only a single program at a time and that lacked what is
today considered to be basic operating-system functionalities
to currently available distributed computer systems that may
include large numbers of individual, discrete computer sys-
tems, each with multiple processors and terabytes or
petabytes of electronic data-storage capacity and which are
interconnected by high-bandwidth electronic communica-
tions media and communications subsystems. Basic opera-
tional parameters of computer systems, including data-stor-
age capacity, processor bandwidth or available processor
cycles per unit time, and data-transfer bandwidths through
communications media and subsystems, continue to increase
geometrically. Operating-system technologies have evolved
in parallel with the rapid evolution of hardware technologies,
and include sophisticated distributed-computing operating
systems and distributed virtual-machine-monitor-based con-
trol systems that allow virtual machines and other computing
tasks to be distributed, managed, and moved, while execut-
ing, among the discrete computer systems within very large
distributed computer systems.

Distributed-computing  technologies, while having
evolved to provide greatly increased functionality and effi-
ciency, are nonetheless constrained by fundamental distrib-
uted-computing constraints and inefficiencies, including con-
straints and inefficiencies associated with providing
concurrent access by multiple processes running in multiple,
discrete computer systems to commonly shared computing
resources, including stored data in various types of shared
data-storage devices. Many different technologies have been
developed and refined to address many of these constraints,
including various types of distributed locking protocols to
serialize access to shared resources despite the lack of a
reliable, common system clock within distributed systems.
However, as with any computational system, the removal or
satisfaction of such constraints is generally obtained at the
cost of computational overhead. This computational over-
head may accumulate during execution of higher-level func-
tionalities, including configuration and management func-
tionalities within a distributed computer system. Designers,
developers, and users of distributed computer systems con-
tinue to seek more efficient approaches to underlying distrib-
uted-computing problems in order to increase the efficiency
of distributed-computing configuration and management
facilities.

SUMMARY

Methods and systems disclosed in the current application
are directed to efficient distribution of resource-availability
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2

information with respect to individual computer systems
within a distributed computer system in order to facilitate
various types of computational tasks, including configuration
and management tasks and facilities. Certain of these imple-
mentations are based on highly efficient, lockless, message-
based information-distribution methods and subsystems that
transmission of messages at a frequency computed from a
computed level of resource availability.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a general architectural diagram for various
types of computers.

FIG. 2 illustrates generalized hardware and software com-
ponents of a general-purpose computer system, such as a
general-purpose computer system having an architecture
similar to that shown in FIG. 1.

FIG. 3 illustrates one type of virtual machine and virtual-
machine execution environment.

FIG. 4 shows a small, example distributed computer sys-
tem that is used, in the following discussion, as context for
describing methods and systems to which the current appli-
cation is directed.

FIGS. 5A-B illustrate an illustration convention used in
subsequent figures.

FIGS. 6A-B illustrate two different types of operations
within a distributed computer system that may affect resource
availability within particular nodes of the distributed com-
puter system.

FIGS. 7A-B illustrate, using the example distributed com-
puter system discussed above with reference to FIGS. 4-5B, a
load-balancing operation.

FIGS. 8A-B illustrate a power-conservation operation that
represents an example of a distributed-computing-manage-
ment operation.

FIG. 9 illustrates one approach to computing two different
message frequencies, Vg, and V. ... used, in certain
implementations, for load balancing and power management,
respectively.

FIGS. 10A-B illustrate use of the computed frequencies
and V by a node of a distributed computer sys-

Power

VBaZance
tem.

FIGS. 11A-C illustrate various types of management that
may be carried out within a distributed computer system
using methods and systems to which the current application is
directed.

FIG. 12 shows an example resource-availability message.

FIGS. 13A-C illustrate a circular queue that is conveniently
used to buffer received messages at many different levels
within computer systems.

FIG. 14 illustrates one implementation of the methods and
systems to which the current application is directed.

FIG. 15 shows a plot, or model, for a variable a that can be
used to facilitate a smooth transition of the distributed com-
puter system management from a power-management mode
of operation to a load-balancing mode of operation.

FIG. 16 illustrates an alternative implementation in which
a node receives two different types of RA messages.

FIG. 17 shows a third resource-availability-information
distribution implementation.

FIGS. 18-23 provide control-flow diagrams as alternative
illustrations of the methods and systems for resource-avail-
ability-information distribution to which the current applica-
tion is directed.

FIGS. 24A-D illustrate an additional feature that can be
added to any of the above-discussed implementations.
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FIGS. 25A-B illustrate yet an additional feature that may
be incorporated into any of the implementations so far dis-
cussed.

DETAILED DESCRIPTION

The current application is directed to methods and systems
for distributing resource-availability information with
respect to individual computer systems among the computer
systems of a distributed computer system. The resource-
availability information can be used for many different types
of computational tasks, including configuration and manage-
ment tasks. Currently available methods and systems for dis-
tributing resource-availability information involve distrib-
uted locking protocols and significant calculation with
significant attendant computational overheads. The methods
and systems disclosed in the current application do not
employ distributed-locking protocols and complex calcula-
tions and are instead computationally straightforward and
efficient. In order to describe the methods and systems to
which the current application is directed, the detailed-de-
scription section of the current application includes three
subsections: (1) a brief overview of computer architecture
and virtual machines; (2) a review of load balancing and
power management within distributed computer systems; and
(3) a discussion of the methods and systems to which the
current application is directed.

A Brief Overview of Computer Architecture and
Virtual Machines

FIG. 1 provides a general architectural diagram for various
types of computers. The computer system contains one or
multiple central processing units (“CPUs”) 102-105, one or
more electronic memories 108 interconnected with the CPUs
by a CPU/memory-subsystem bus 110 or multiple busses, a
first bridge 112 that interconnects the CPU/memory-sub-
system bus 110 with additional busses 114 and 116, or other
types of high-speed interconnection media, including mul-
tiple, high-speed serial interconnects. These busses or serial
interconnections, in turn, connect the CPUs and memory with
specialized processors, such as a graphics processor 118, and
with one or more additional bridges 120, which are intercon-
nected with high-speed serial links or with multiple control-
lers 122-127, such as controller 127, that provide access to
various different types of mass-storage devices 128, elec-
tronic displays, input devices, and other such components,
subcomponents, and computational resources.

FIG. 2 illustrates generalized hardware and software com-
ponents of a general-purpose computer system, such as a
general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 200 is
often considered to include three fundamental layers: (1) a
hardware layer or level 202; (2) an operating-system layer or
level 204; and (3) an application-program layer or level 206.
The hardware layer 202 includes one or more processors 208,
system memory 210, various different types of input-output
(“1/0”) devices 210 and 212, and mass-storage devices 214.
Of course, the hardware level also includes many other com-
ponents, including power supplies, internal communications
links and busses, specialized integrated circuits, many difter-
ent types of processor-controlled or microprocessor-con-
trolled peripheral devices and controllers, and many other
components. The operating system 204 interfaces to the hard-
ware level 202 through a low-level operating system and
hardware interface 216 generally comprising a set of non-
privileged processor instructions 218, a set of privileged pro-
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cessor instructions 220, a set of non-privileged registers and
memory addresses 222, and a set of privileged registers and
memory addresses 224. In general, the operating system
exposes non-privileged instructions, non-privileged registers,
and non-privileged memory addresses 226 and a system-call
interface 228 as an operating-system interface 230 to appli-
cation programs 232-236 that execute within an execution
environment provided to the application programs by the
operating system. The operating system, alone, accesses the
privileged instructions, privileged registers, and privileged
memory addresses. By reserving access to privileged instruc-
tions, privileged registers, and privileged memory addresses,
the operating system can ensure that application programs
and other higher-level computational entities cannot interfere
with one another’s execution and cannot change the overall
state of the computer system in ways that could deleteriously
impact system operation. The operating system includes
many internal components and modules, including a sched-
uler 242, memory management 244, a file system 246, device
drivers 248, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including vir-
tual memory, which provides to each application program and
other computational entities a separate, large, linear memory-
address space that is mapped by the operating system to
various electronic memories and mass-storage devices. The
scheduler orchestrates interleaved execution of various dif-
ferent application programs and higher-level computational
entities, providing to each application program a virtual,
stand-alone system devoted entirely to the application pro-
gram. From the application program’s standpoint, the appli-
cation program executes continuously without concern for
the need to share processor resources and other system
resources with other application programs and higher-level
computational entities. The device drivers abstract details of
hardware-component operation, allowing application pro-
grams to employ the system-call interface for transmitting
and receiving data to and from communications networks,
mass-storage devices, and other /O devices and subsystems.
The file system 236 facilitates abstraction of mass-storage-
device and memory resources as a high-level, easy-to-access,
file-system interface. Thus, the development and evolution of
the operating system has resulted in the generation of a type of
multi-faceted virtual execution environment for application
programs and other higher-level computational entities.
While the execution environments provided by operating
systems have proved to be an enormously successtful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within various different
types of computer hardware. In many cases, popular applica-
tion programs and computational systems are developed to
run on only a subset of the available operating systems, and
can therefore be executed within only a subset of the various
different types of computer systems on which the operating
systems are designed to run. Often, even when an application
program or other computational system is ported to additional
operating systems, the application program or other compu-
tational system can nonetheless run more efficiently on the
operating systems for which the application program or other
computational system was originally targeted. Another diffi-
culty arises from the increasingly distributed nature of com-
puter systems. Although distributed operating systems are the
subject of considerable research and development efforts,
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many of the popular operating systems are designed primarily
for execution on a single computer system. In many cases, it
is difficult to move application programs, in real time,
between the different computer systems of a distributed com-
puter system for high-availability, fault-tolerance, and load-
balancing purposes. The problems are even greater in hetero-
geneous distributed computer systems which include
different types of hardware and devices running different
types of operating systems. Operating systems continue to
evolve, as a result of which certain older application programs
and other computational entities may be incompatible with
more recent versions of operating systems for which they are
targeted, creating compatibility issues that are particularly
difficult to manage in large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” has been developed and
evolved to further abstract computer hardware in order to
address many difficulties and challenges associated with tra-
ditional computing systems, including the compatibility
issues discussed above. FIG. 3 illustrates one type of virtual
machine and virtual-machine execution environment. FIG. 3
uses the same illustration conventions as used in FIG. 2. In
particular, the computer system 300 in FIG. 3 includes the
same hardware layer 302 as the hardware layer 202 shown in
FIG. 2. However, rather than providing an operating system
layer directly above the hardware layer, as in FIG. 2, the
virtualized computing environment illustrated in FIG. 3 fea-
tures a virtualization layer 304 that interfaces through a vir-
tualization-layer/hardware-layer interface 306, equivalent to
interface 216 in FIG. 2, to the hardware. The virtualization
layer provides a hardware-like interface 308 to a number of
virtual machines, such as virtual machine 310, executing
above the virtualization layer in a virtual-machine layer 312.
Each virtual machine includes one or more application pro-
grams or other higher-level computational entities packaged
together with an operating system, such as application 314
and operating system 316 packaged together within virtual
machine 310. Each virtual machine is thus equivalent to the
operating-system layer 204 and application-program layer
206 in the general-purpose computer system shown in FIG. 2.
Each operating system within a virtual machine interfaces to
the virtualization-layer interface 308 rather than to the actual
hardware interface 306. The virtualization layer partitions
hardware resources into abstract virtual-hardware layers to
which each operating system within a virtual machine inter-
faces. The operating systems within the virtual machines, in
general, are unaware of the virtualization layer and operate as
if they were directly accessing a true hardware interface. The
virtualization layer ensures that each of the virtual machines
currently executing within the virtual environment receive a
fair allocation of underlying hardware resources and that all
virtual machines receive sufficient resources to progress in
execution. The virtualization-layer interface 308 may differ
for different operating systems. For example, the virtualiza-
tion layer is generally able to provide virtual hardware inter-
faces for a variety of different types of computer hardware.
This allows, as one example, a virtual machine that includes
an operating system designed for a particular computer archi-
tecture to run on hardware of a different architecture. The
number of virtual machines need not be equal to the number
of physical processors or even a multiple of the number of
processors. The virtualization layer includes a virtual-ma-
chine-monitor module 318 that virtualizes physical proces-
sors in the hardware layer to create virtual processors on
which each of the virtual machines executes. For execution
efficiency, the virtualization layer attempts to allow virtual
machines to directly execute non-privileged instructions and
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to directly access non-privileged registers and memory. How-
ever, when the operating system within a virtual machine
accesses virtual privileged instructions, virtual privileged
registers, and virtual privileged memory through the virtual-
ization-layer interface 308, the accesses result in execution of
virtualization-layer code to simulate or emulate the privileged
resources. The virtualization layer additionally includes a
kernel module 320 that manages memory, communications,
and data-storage machine resources on behalf of executing
virtual machines. The kernel, for example, maintains shadow
page tables on each virtual machine so that hardware-level
virtual-memory facilities can be used to process memory
accesses. The kernel additionally includes routines that
implement virtual communications and data-storage devices
as well as device drivers that directly control the operation of
underlying hardware communications and data-storage
devices. Similarly, the kernel virtualizes various other types
of I/O devices, including keyboards, optical-disk drives, and
other such devices. The virtualization layer essentially sched-
ules execution of virtual machines much like an operating
system schedules execution of application programs, so that
the virtual machines each execute within a complete and fully
functional virtual hardware layer.

A Review of Load Balancing and Power
Management within Distributed Computer Systems

FIG. 4 shows a small, example distributed computer sys-
tem that is used, in the following discussion, as context for
describing methods and systems to which the current appli-
cation is directed. The distributed computer system shown in
FIG. 4 includes eight discrete computer-system nodes 402-
409. These nodes may be workstations, personal computers,
various types of server computers, or may themselves be
distributed computer systems, and each may include any of
many different types of electronic data-storage subsystems,
may include multiple processors, and may execute any of
many different types of operating systems, virtual-machine
monitors, and other types of control programs that provide
execution environments for processes and virtual machines.
The nodes intercommunicate through one or more different
types of communications media 410. The nodes may be inter-
connected by local area networks, storage-area networks,
point-to-point interconnects, wide area networks, and various
types of hybrid communications, including the Internet. The
physical topology and details of the communications media
and networking are not relevant to the current discussion.
Relevant to the current discussion is the fact that each node
can transmit a message, either directly or indirectly, to each of
the remaining nodes of the distributed computer system. In
many cases, a message may be transmitted by one node, using
abroadcast mode, to all or a subgroup of the remaining nodes,
and in other cases, messages are transmitted to individual
nodes of the remaining nodes. But, whatever the communi-
cations medium and technology involved, a node may trans-
mit a message to another node of the distributed computer
system. Many types of distributed computer systems are cur-
rently available, including clusters and grids.

FIGS. 5A-B illustrate an illustration convention used in
subsequent figures. As shown in FIG. 5A, each node in the
distributed computer system is represented by a rectangular
shape 502 with three vertical bars 504-506 representing the
amount of storage capacity, processing capacity, and commu-
nications capacity, respectively, currently used within the
node and a horizontal bar 508 representing the number of
virtual machines currently executing within the node. As
shown in FIG. 5A, the full height of each vertical bar repre-
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sents 100 percent use of a computational capacity. In subse-
quent figures, as shown in FIG. 5B, the percentage of storage,
processing, and communications capacities currently used
within a node are indicated by the shaded portions within the
vertical and horizontal bars. In FIG. 5B, the shaded portion
510 of vertical bar 504 indicates that 36 percent of the storage
capacity is currently used in the node represented by rect-
angle 512. Shaded portion 514 of vertical bar 505 similarly
indicates that 29 percent of the processing capacity of the
node is currently being used and shaded portion 516 of the
vertical bar 506 indicates that 64 percent of the communica-
tions capacity of the node is being used. Shaded portion 518
of'horizontal bar 508 indicates that 18 percent of some maxi-
mum number of virtual machines that may execute on a node
are currently executing in the node represented by the rect-
angular depiction 512.

It should be noted that there are many different possible
metrics associated with resources and resource usage within
nodes of a distributed computer system. The general storage,
processing, and communications capacities and number of
executing VMs used in these examples are employed entirely
for illustration purposes. The methods and systems to which
the current application is directed may employ any of many
different metrics and computed values to represent the
amount of resources currently used within a node of a distrib-
uted computer system and/or the amount of available
resources within the system.

FIGS. 6A-B illustrate two different types of operations
within a distributed computer system that may affect resource
availability within particular nodes of the distributed com-
puter system. These types of actions are examples and do not
represent, by any means, all of the various types of actions
that may occur within a distributed computer system with the
result of altering resource availability within individual
nodes, or discrete computers or computer systems, within the
multi-node distributed computer system. In FIG. 6A, a first
node 602 is operating under a relatively high load, apparent
from the fact that greater than 50% of'the storage, processing,
and communications capacities are currently in use, as indi-
cated by the shaded portions of vertical bars 604-606. The
first node is also running a significant number of virtual
machines, as indicated by the shaded portion of horizontal bar
608. A second node 610 is operating under a significantly
lighter load, as evidenced by the relatively smaller shaded
portions of vertical bars 612-614. A virtual machine can be
moved, as indicated by curved arrow 616, from the heavily
loaded node 602 to the less-heavily loaded node 610. The
results of this movement, or migration, of a virtual machine
executing on the first node 602 to the second node 610 is
shown in FIG. 6B. As indicated by dashed line segments, such
as dashed line segment 620, and by small arrows, such as
arrow 622, the percentage use of the various computational
resources of the first node 602 are reduced while the percent-
age the computational resources on the second node 610 that
are currently in use have increased due to the transfer of one
or more virtual machines from the first node 602 to the second
node 610. Virtual machines may be transferred from one node
to another even during execution. In many implementations
of virtual-machine migration, the virtual machine, executing
on a first node, is quiesced, the state of the virtual machine is
recorded as data in a file, the file is transferred from the first
node to a second node, and the process is reversed on the
second node in order to launch and configure the virtual
machine on the second node, where it resumes execution at
the point at which it was previously quiesced.

FIGS. 6A-B also illustrate a second operation that may
affect the percentage of available resources used within a
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node of a distributed computer system. In FIG. 6A, a third
node 624, is currently modestly loaded with execution tasks.
As indicated by arrow 626, a new virtual machine can be
configured and launched on this node, the effects of which are
indicated by arrows, such as arrow 628, in FIG. 6B. The
launching of a new virtual machine within a node of the
distributed computer system generally consumes resources
and lowers the availability of resources on that node.

In the following discussion, the node to which a virtual
machine is moved, or migrated, or on which a new virtual
machine is configured and launched, is referred to as a “target
node.” In many distributed computer systems, target nodes
are selected in the course of various types of configuration
and management activities, including distribution of virtual
machines, for launching and execution, to nodes within a
distributed computer system and migration of nodes within a
distributed computer system in order to balance the compu-
tational loads across the nodes of a distributed computer
system. Another management operation in which target nodes
are identified may involve shifting the computational burdens
among the nodes of a distributed computer system in order to
remove all computing tasks from a subset of the nodes and
power down those nodes in order to conserve expenditure of
electrical energy used to run the distributed computer system.
It should be noted that load balancing and power management
represent but two of many different types of configuration and
management tasks that may involve selecting target nodes. In
addition, target nodes may be selected not only for migration
of'virtual machines and launching of virtual machines, but for
directing other types of computational tasks to one or nodes of
a distributed computer system.

FIGS. 7A-B illustrate, using the example distributed com-
puter system discussed above with reference to FIGS. 4-5B, a
load-balancing operation. In FIG. 7A, certain of the nodes of
the distributed computer system, including nodes 702-707,
are relatively heavily loaded with computational tasks, as
indicated by the relatively large portions of the resource
capacities currently being used in these nodes. By contrast,
nodes 708 and 709 are lightly loaded, with significant avail-
able resources. Note that the number of currently executing
virtual machines, indicated by the horizontal bars within the
nodes, is not necessarily strongly correlated with the percent-
age of the resources used within a node. For example, there
are a fair number of virtual machines 710 executing within
lightly loaded node 708 and a similar number of virtual
machines 712 executing within heavily loaded node 702.
While each executing virtual machine occupies some amount
of memory and mass storage, the total amount of computa-
tional resources allocated to a particular executing virtual
machine is highly dependent on the computational tasks cur-
rently being carried out by the virtual machine. As one
example, in a disk-bound virtual-machine, the virtual
machine may use only a tiny fraction of the available process-
ing bandwidth, since the virtual machine may spend most of
its time waiting for the completion of disk reads and writes.
The number of virtual machines currently executing on a
node of the distributed computer system is not, by itself,
generally strongly reflective of the amount of available
resources within the node.

FIG. 7B shows the example distributed computer system
with all nodes modestly loaded with computational tasks. A
load-balancing operation is a distributed-computing-system
management operation that moves virtual machines between
nodes of a distributed computer system in order to produce a
balanced use of resources across all the nodes, as shown in
FIG. 7B, rather than an unbalanced distribution of resource
usage, as shown in FIG. 7A.
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FIGS. 8A-B illustrate a power-conservation operation that
represents an example of a distributed-computing-manage-
ment operation. In FIG. 8A, all of the nodes of the example
distributed computer system are currently executing virtual
machines, with one node 802 fairly highly loaded, two nodes
804-805 modestly loaded, and five nodes 806-810 lightly
loaded. In many cases, the power consumption of a computer
system is relatively independent of the computational load on
the computer system. Whether lightly loaded or heavily
loaded, for example, a computer system must still keep disk
platters spinning, RAM-memory powered on, processors
powered on, fans spinning, and other components powered on
and active. Of course, in modern computer systems, various
technologies are employed to selectively power down
unneeded components, place underutilized components in
low-power states, and to undertake other types of power-
consumption management in order to prevent needless con-
sumption of electrical energy. Nonetheless, unless no com-
putational tasks are currently executed within a node, the
node generally continuously consumes significant electrical
energy. In one type of distributed-computing-system power-
management operation, as illustrated in FIG. 8B, computa-
tional tasks may be redistributed within a distributed com-
puter system in order to more heavily load some portion of the
nodes, such as nodes 806, 802, 810, and 809 in FIG. 8B, so
that the remaining nodes, 805, 807, 808, and 804 in FIG. 8B,
can be powered down, as indicated by the script P and down-
ward-pointing arrows in FIG. 8B, such as script P and down-
ward-pointing arrow 816.

In summary, a load-balancing operation involves migrat-
ing virtual machines and intelligently choosing target nodes
on which to launch new virtual machines within a distributed
computer system, in order to more or less equally distribute
the computational load across all nodes of the distributed
computer system, while the power-management operation
seeks to redistribute virtual machines and other computa-
tional tasks among the nodes of a distributed computer system
in order to free up some subset of the nodes and power those
nodes down.

A Discussion of the Methods and Systems to which
the Current Application is Directed

In the case of both load balancing and power management,
virtual machines and other executable tasks are distributed
and redistributed within a distributed computer system based
on the amount of computational resources currently being
used in a node or, equivalently, on the amount of computa-
tional resources currently available in a node for use. There-
fore, in order to carry out distribution and redistribution of
computational tasks for load balancing and power manage-
ment, nodes within the distributed computer system need to
determine or estimate the availability of computational
resources on other, remote nodes within the distributed com-
puter system or, equivalently, the portion of computational
resources in use on the remote nodes. In many currently
available distributed-computing-management subsystems
and methods, the determination and distribution of resource-
availability information is carried out using relatively com-
putationally expensive techniques that involve distributed-
locking protocols and significant calculation. As a result, the
cost of virtual-machine migration and intelligent launching of
new virtual machines may be relatively high, both in compute
cycles and in temporal delays. The current application is
directed to methods and systems in which resource-availabil-
ity information is made available within a distributed com-
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puter system for nodes of the distributed computer system
both quickly and computationally efficiently.

In certain implementations of the currently disclosed meth-
ods and systems, nodes broadcast messages at a frequency
related to the availability of computational resources within
the nodes or, equivalently, related to the portion of computa-
tional resources currently being consumed within the node.
FIG. 9 illustrates one approach to computing two different
message frequencies, Vg, and V. ... used, in certain
implementations, for load balancing and power management,
respectively. FIG. 9 shows an exemplary node 902, using the
illustration conventions discussed above with reference to
FIGS. 5A-B. The amount of resources currently consumed
within this node is characterized 904 by three values S, P, and
C. Thus, virtual machines and/or other executing tasks on
node 902 is currently consuming 60 percent of the storage
capacity of the node, 40 percent of the processing bandwidth
of'the node, and 50 percent of the communications bandwidth
of'the node. A resource-availability metric RA, may be com-
puted as:

_(1=-5+1-P+1-0)

RA
3

where

RA €0, 1],

as shown in 906 of FIG. 9. In general, when a node con-
sumes a particular computational resource above a threshold
value, the node may be computationally constrained or bound
due to overuse of the resource. Therefore, three penalties, P,
P, and P, are calculated for each of the storage, processing,
and communications resources by:

—0.5, when S > S_threshold
Ps = 0

{ —0.5, when P> P_threshold

0, otherwise,

otherwise

—0.5, when C > C_threshold

otherwise,

as shown in 908 in FIG. 9. A resource metric, RM, can then be
computed as:

RM=RA+P+Pp+P,

as shown in Equation 910 in FIG. 9. A final resource-avail-
ability metric, f; ,, can then be computed from the resource
metric RM by:

RM, when RM > min

fra=1 .
min

where

fra € [min, 1],

as shown in 912 in FIG. 9. Finally, the two frequencies
V satance @0d Vo are computed from the final resource
metric as:
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Viatance = k- fra
Vpower = L min
Jra
where

VBalance € [k -min, k]

Vpower € [{-min, ],

as shown in line 914 in FIG. 9.

The two computed frequencies Vz,1,,ce Power are thus
inversely related. Vg, . increases as the availability of
resources within a node increases and V., increases with
increasing consumption of resources on anode. Vg ;... and
V zower are, in the currently described methods and systems,
observables computed by nodes from messages received by
the nodes, while k, 1, and min are fixed, known quantities.
Thus, by observing V5 ;.. and/orV, ... a node can deter-
mine the final resource metric f;, for a remote node. The
value min is used both to keep the computed frequency from
falling to 0, for reasons discussed below, as well as to prevent
V zower from being an undefined value.

FIGS. 10A-B illustrate use of the computed frequencies
V satance A0d Vg by a node of a distributed computer sys-
tem. As shown in FIG. 10A, the node 1002 broadcasts
resource messages 1004-1008 periodically to one or more
remote nodes. In a given unit time 1010, such as a second,
minute, or another larger or smaller unit of time, the node
transmits Vg,,,,.. messages. Equivalently, the interval of
time 1012 between messages transmitted by the node 1002 is

equal to

andV

1

VBatance

Similarly, as shown in FIG. 10B, the interval of time 1014
between transmitted messages 1016 and 1018 is

1

Veower

when messages are transmitted according to the V, ... fre-
quency. When transmitting messages according to the
Vsaance frequency, the frequency of messages is directly
related to the resource availability of the node and the time
interval between messages is inversely related to the resource
availability. By contrast, when transmitting messages accord-
ing to the V., frequency, the frequency of transmitted
messages is inversely proportional to the resource availability
and the interval of time between messages is directly propor-
tional to the resource availability. In either case, a receiving
node may determine either or both of the frequency of mes-
sage transmission or interval of time between messages trans-
mitted by a remote node and calculate, knowing k, 1, and min,
the f, , resource metric value for the node. Thus, a first node
can inform a second node of the first node’s resource avail-
ability by transmitting messages to the second node at a
particular frequency. This involves no distributed-locking
protocols and no complex calculations, delays, or other com-
putational and temporal overheads, as discussed further,
below. Of course, an opposite convention can alternatively be
used, with frequencies proportional to a resources-used met-
ric.
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FIGS. 11A-C illustrate various types of management that
may be carried out within a distributed computer system
using methods and systems to which the current application is
directed. As shown in FIG. 11A, a single node 1102 may be
responsible for load balancing and power management for the
entire distributed computer system. In this case, all of the
remaining nodes 1104-1110 transmit messages at computed
frequencies to the control node 1102, which can then deter-
mine the resource availability of nodes 1104-1110 in order to
make load-balancing and power-management decisions.
Alternatively, as shown in FIG. 11B, two nodes 1102 and
1110 may share management control over the distributed
computer system and may transmit resource-availability
messages, at computed frequencies, to each other 1112 as
well as receiving resource-availability messages, transmitted
at computed frequencies, from the remaining nodes 1102-
1108. Alternatively, as shown in FIG. 11C, the management
functions may be fully distributed within a distributed com-
puter system, in which case all of the nodes 1102, 1104, and
1105-1110 transmit resource-availability messages, at com-
puted frequencies, to each of the remaining nodes. In other
words, the currently described methods and systems may be
employed regardless of how management operations that use
resource-availability information are carried out with respect
the nodes of a distributed computer system.

The resource-availability messages may have different
forms and contents depending on the particular communica-
tion media and communications protocols employed within a
distributed computer system. In general, the message may be
very simple. FIG. 12 shows an example resource-availability
message. The message generally includes a header 1202, the
format and contents of which are specified by a communica-
tions protocol, but generally including source and destination
addresses for the message as well as other protocol informa-
tion related to the message. The message additionally
includes an indication 1204 that the message is a resource-
availability message, or “RA message.” In certain implemen-
tations, this information may be encoded within the header,
while in other cases this indication is part of the data payload
of the message. Finally, the message may include a node
identifier 1206. In certain implementations, the node identi-
fier may not be necessary, since a node receiving the message
can infer the identity of the transmitting node from the source
address included in the header. However, in many cases, it
may be simpler to include the node identifier within the data
payload, since each node may employ many different com-
munications-protocol addresses and, moreover, the commu-
nications-protocol addresses employed by a node may be
dynamic. However an RA message is constructed, it is con-
structed so that a node receiving the message can identify the
sending node and the fact that the message is an RA message.

FIGS. 13A-C illustrate a circular queue that is conveniently
used to buffer received messages at many different levels
within computer systems. As shown in FIG. 13A, a circular
queue is illustrated as a circular buffer containing multiple
entries, such as entry 1302 in circular queue 1304. In FIG.
13A, entries filled with data are indicated by cross-hatching
and empty entries are indicated by lack of cross-hatching. The
circular queue is also associated with an “in” pointer 1306 and
an “out” pointer 1308. In the example circular queue 1304,
the “in” pointer points to an entry to which a next incoming
message should be entered, or queued, and the “out” pointer
indicates a filled entry that should be next retrieved from the
circular queue. A circular queue is an example of a first-in-
first-out queue.

FIG. 13B shows the circular queue 1304 shown in FIG.
13A following input of a next message. The next message has
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been entered into entry or slot 1310 and the “in” pointer has
been advanced, in a clockwise direction, to point to a next free
entry 1302. FIG. 13C shows extraction of a message from the
circular queue 1304 shown in FIG. 13A. The message in entry
1314 in FIG. 13A has been removed from the circular queue
and the “out” pointer has been advanced by one entry in the
clockwise direction to point to the message-containing entry
1316. The circular queues used in methods and systems of the
current application are continuously written, without neces-
sarily removing entries, by overwriting older entries during
input operations, when the entry pointed to by the in pointer
contains data, and by advancing both the in and out pointers
when the queue is filled. Thus, a circular queue containing
eight entries stores the eight most recently received messages
in a continuous stream of messages when each incoming
message is input into the circular queue. These circular
queues support various methods, including the method in( )
which inputs a message into the circular queue, advancing the
“in” pointer when the circular queue is not filled and advanc-
ing both the “in” and “out” pointers when the circular queue
is filled, and a method out( ) which extracts the least most
recently received message from the circular queue, in general
without advancing the “out” pointer, and additional methods
discussed below. Circular queues are generally implemented
using linear address spaces in memory, with the circulariza-
tion obtained from the logic of the circular-queue methods.
Circular queues are used, in the current discussion, as an
example of the many different suitable data-buffering tech-
niques that can be used to buffer data extracted from received
RA messages.

FIG. 14 illustrates one implementation of the methods and
systems to which the current application is directed. In FIG.
14, a node 1402 of a distributed computer system receives a
stream of resource-availability messages, such as resource-
availability message 1404, from other nodes of the distributed
computer system. All of the messages are received by a com-
munications subsystem 1406 and node identifiers extracted
from the received resource-availability messages are continu-
ously queued to a two-entry circular queue 1408, as described
above with reference to FIGS. 13A-C, that can be continu-
ously written to, when full, by advancing both the in and out
pointers. A circular queue is used, in this case, to avoid com-
plexities involved with asynchronous readers and writers.
Once RA messages are being received, a reader can read a
valid entry from the circular queue regardless of whether or
not the communications subsystem is writing a next entry into
the circular queue. It is presumed that at least two RA mes-
sages will be received before a target node needs to be
selected. Without that assumption, the circular queue in each
RA-message-receiving node can be initialized with default
node-identifier entries. In this case, the “out” function mem-
ber of the circular queue does not need to remove an entry
from the circular queue, but simply returns a node identifier
stored in the queue entry.

As RA messages are received from the other nodes of the
distributed computer system by a first node, those of the other
nodes with greatest resource availability, when using the
V satance computed frequencies, transmit resource-availabil-
ity messages most frequently. Therefore, at any point in time,
a node identifier extracted from the two-entry circular queue
in the first node has highest probability of corresponding to a
node with a large resource availability. Thus, simply extract-
ing an entry from the circular queue furnishes a target node
for both configuring and launching a new virtual machine or
other executable task or to which a virtual machine or other
task can be moved from another node for load-balancing
purposes. Similarly, when RA messages are transmitted
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according to the V., frequency, then extracting a node
identifier from the circular queue by a first node results in
obtaining a node identifier, with high probability, correspond-
ing to another node with comparatively low resource avail-
ability. In power-management operations, a management
operation attempts to redistribute virtual machines and
launch new virtual machines, or other computational tasks, on
already loaded machines in order to completely unload some
subgroup of the nodes of a distributed-computer system so
that those nodes can be powered down.

FIG. 14 also includes pseudocode for a “selectTarget-
Node” routine 1410. In this routine, a reference to the two-
entry queue is provided by the argument CQ. A node identifier
is extracted from the two-entry queue and returned as the
target node. As discussed above, the selected node from the
two-entry circular queue has a high probability of being an
appropriate target node for load balancing, when the RA
messages are transmitted according to Vz,,,...... frequency, or
for power management, when the RA messages are transmit-
ted according to the V... frequency.

Rather than using the distributed-locking-protocol-based
methods and complex computations currently used for dis-
tributing resource-availability information among nodes of a
distributed computer system, the currently described meth-
ods and systems involve only the transmission of resource-
availability messages at calculated frequencies, a simple two-
entry circular queue into which node identifiers extracted
from the messages are entered, with overwriting, and simple
extraction of node identifiers from the circular queue when a
target node is needed for distributed-computing-system-man-
agement operations. The maximum frequency at which
resource-availability messages are transmitted can be scaled,
using the k and 1 coefficients discussed above with reference
to FIG. 9, so that the communications-traffic overheads are
insignificant within the context of normal distributed-com-
puting-system operations. In addition to low computational
overhead and simplicity, the currently disclosed methods and
systems do not incur communications-related time delays in
furnishing target node identifiers, because the target node
identifier is already available in the circular queue, and does
not need to be requested from remote nodes.

As mentioned above, in reference to FIG. 9, the constant
min both prevents an undefined value for V,,,., as well as
ensures that, regardless of how low or how great the resource
availability becomes within a node, the node still transmits
resource-availability messages at some low frequency. This
introduces a level of stochastic uncertainty into the method,
similar to uncertainty used in various optimization and search
routines to prevent the optimization and search routines from
becoming stuck or stabilized at local minima or maxima.
Even in the case that improper resource availabilities are
inferred by a first nodes with respect to a second node, due
perhaps to resonant oscillations in the resource availability
within the node that match the frequency of message trans-
mission, the stochastic uncertainty provided by occasional
RA-message transmissions ensures that every node will even-
tually selected as target node within a finite period of time.
Occasional unjustified selection of a node as a target node
does not lead to crashes or unrecoverable errors, but only to
slight inefficiencies involved in unnecessarily redistributing
virtual machines or other computational tasks routed to misi-
dentified target nodes.

In certain cases, load balancing and power management
represent opposing trends in the overall management of a
distributed computer system. As one example, it may be that
the peak computational load on a distributed computer sys-
tem occurs between 9:00 am in the morning and 4:00 pm in
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the afternoon, during which all nodes of the distributed com-
puter system need to be operational and the overall compu-
tational load fairly balanced among them. However, at other
times, the overall load may be considerably lower, in which
case a significant number of the nodes are best powered down
in order to conserve consumption of electrical energy. The
above-described implementation can accommodate these
types of operational-mode fluctuations by using stored or
distributed information to direct nodes to transmit RA mes-
sages according to the V... frequency between 9:00 am
and 4:00 pm and otherwise use the V..., frequency calcu-
lation as the basis for RA-message transmission.

Another approach to using the currently described methods
and systems in the above-described two-mode operational
scheme is to employ an RA-message-transmission frequency
V computed as a linear combinationofV ;.. andV,  _ .In
other words: V=a. VBalance+(1-at) V.., FIG. 15 shows a
plot, or model, for a variable o that can be used to facilitate a
smooth transition of the distributed computer system man-
agement from a power-management mode of operation to a
load-balancing mode of operation. The variable o has a value
of “1” between 9:00 AM 1502 and 4:00 PM 1504 and a value
of “0” between 8:00 PM 1506 and 6:30 AM 1508.

Alternatively, two different types of RA messages may be
used. FIG. 16 illustrates an alternative implementation in
which a node receives two different types of RA messages. A
stream of balance RA messages, such as balance RA message
1602 and a stream of power RA messages, such as power RA
message 1604, are transmitted by each node according to the
V gurance A Vi, frequencies, respectively. Node identifi-
ers from the balance RA messages are written into a first
two-entry queue 1606 and node identifiers from the power
RA messages are written into a second two-entry queue 1608.
The routine “selectTNode” 1610 takes, as an argument, a
Boolean value indicating whether or not a target for load
balancing or a target for power management is sought and
returns a node identifier from the appropriate one of the two
circular queues 1606 and 1608. Thus, in this second imple-
mentation, each distributed-computing-system node transmit
balance RA message at the computed V... frequency and
power RA messages at the computed V... frequency allow-
ing receiving nodes to select targets for either load balancing
or power management at any point in time.

As an exercise in completeness, a next implementation
uses RA-message transmission to provide resource-availabil-
ity metrics, on demand, within a first node with respect to the
remaining nodes of a distributed computer system. This is not
necessarily a practical implementation, but shows that full
resource-availability information can be distributed among
the nodes of a distributed computer system using transmis-
sion of RA messages at computed frequencies. FIG. 17 shows
a third resource-availability-information distribution imple-
mentation. In this implementation, each node that uses
resource-availability information to make decisions that
involve selecting target nodes based on resource availability
maintains a separate circular queue and frequency value for
each remote node of the distributed computer system, such as
circular queue 1702 and associated frequency value 1704.
The external nodes transmit RA messages based on a com-
puted frequency, which are received as a stream of RA mes-
sages 1706 by those nodes needing to maintain resource-
availability information to remote nodes. FIG. 17 provides
pseudocode 1708 for a received message routine that pro-
cesses each received RA message. When the message is
received, a system time is obtained via a system call and
stored in a local variable t2 1710. This time is written to the
circular queue corresponding to the node which transmitted
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the message 1712. Then, when there are sufficient entries in
the circular queue, which is always the case after an initial
start-up period, the routine obtains a second time t1 1714
from a less recent queue entry and computes the frequency at
which messages are being received from the remote node
1716. In this fashion, the node can maintain an updated cur-
rent estimate of the message-transmission frequency from
each remote node which can be used, as discussed above with
reference to FIG. 9, to compute the resource availability of
each node.

FIGS. 18-23 provide control-flow diagrams as alternative
illustrations of the methods and systems for resource-avail-
ability-information distribution to which the current applica-
tion is directed. These control-flow diagrams are intended to
provide an illustration of several implementations of the cur-
rently disclosed methods and systems. Many alternative
implementations are possible.

FIG. 18 provides a control-flow diagram for a routine
“eventLoop,” which represents an underlying event loop
within a distributed-computing-system node. In step 1802,
the node waits for a next event to occur. In the case that the
next-occurring event is a resource-timer expiration event, as
determined in step 1804, the routine “resourceMessageT-
imer” is called in step 1806 to handle the event. Many other
possible events may be identified and handled in the event
loop, as represented by ellipses 1808. In the case the event is
a resource-message-received event, as determined in step
1810, the routine “resourceMessageReceived” is called in
step 1812. A catch-all default handler 1814 may handle unex-
pected events. In general, some type of event loop executes at
some level within a distributed-computing-system node and
includes detection of resource-timer-expiration events and
RM-message-reception events in order to facilitate resource-
availability-information distribution according to the cur-
rently disclosed methods and systems.

FIG. 19 provides a control-flow diagram for the routine
“resourceMessageTimer” called in step 1806 of FIG. 18. In
step 1902, the routine “resourceMessageTimer” transmits an
RA message to receiver nodes of RA messages in the distrib-
uted computer system. As discussed above, this may be car-
ried out using a single broadcast-mode RA-message trans-
mission or by transmitting individual RA messages to
receiving nodes. In a symmetrical, peer-to-peer system, the
RA message are generally sent from each node to all other
nodes in the distributed computer system. Next, in step 1904,
the routine computes a current f , metric and corresponding
message-transmission frequency V. In certain implementa-
tions, both Vg, . and V,  are computed in this step. In
other implementations, a single frequency V is computed as a
linear combination of Vz_;,,,.. and V... In many imple-
mentations, only a single frequency representative of the
resource availability or current resource consumption of the
node is computed. In step 1906, the resource timer is set to
expire in 1/V units of time.

FIG. 20 provides one implementation of the routine
“resourceMessageReceived” called in step 1812 of FIG. 18.
In step 2002, the routine extracts a node identifier from a
received RA message in order to determine the node from
which the RA message was received. Then, in step 2004, the
routine queues an entry to a circular queue. In certain imple-
mentations, a node identifier is queued to a single circular
queue to which all RA messages are written. In other imple-
mentations, discussed above with reference to FIGS. 16 and
17, the node identifier obtained in step 2002 is or an RA-
message type is used to select one of multiple circular queues
to which to input an entry in step 2004. In certain implemen-
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tations, the entry comprises the node identifier. In other cases,
the entry is the time at which the message was received.

FIG. 21 provides a control-flow diagram for the routine
“queueEntryToQueue,” called in step 2004 FIG. 20, for the
implementation discussed above with reference to F1IG. 17. In
step 2102, the message is received and a current system time
12 is obtained by a call to a system routine. In step 2104, the
current system time t2 is queued to the circular queue corre-
sponding to the node from which the message was received.
When there are sufficient entries in the queue to compute a
frequency for the node, as determined in step 2106, a second
time t1 is extracted from the queue from a previous entry in
step 2108 and the frequency for the node is computed in step
2110. The value interval is the number of messages that forms
an interval for computing the frequency. The last received and
first received times corresponding to this interval are used to
compute the frequency, as discussed above with reference to
FIG. 17.

FIG. 22 provides a control-flow diagram for a routine
“selectTargetNode.” In this implementation, a target node for
either load-balancing purposes or power-management pur-
poses is obtained by extracting an entry from a two-element
circular queue, in step 2202, and returning the node identifier
in that entry as the target node, in step 2204. FIG. 23 provides
an alternative implementation of the routine “selectTarget-
Node” for the implementation described with reference to
FIG. 17. In step 2302, the Boolean argument balanced is
received in local variable tis set to ). When balanced is true,
then local variable val is set to -1, in step 2306 and otherwise
setto 2 in step 2308. Then, in the for-loop of steps 2310-2315,
all the frequencies maintained for each of the remote nodes in
the distributed computer system are searched to find the high-
est frequency, when the received argument balanced is true, or
the lowest-frequency, when the received Boolean argument
balanced is false, node to return as the target node in step
2316.

FIGS. 24A-D illustrate an additional feature that can be
added to any of the above-discussed implementations. This
additional feature is discussed, below, in the context of the
implementation discussed above with reference to FIG. 14.
FIG. 24 A illustrates the additional feature using illustration
conventions similar to those used in FIG. 14. As in FIG. 14, a
node 2402 of a distributed computer system receives a stream
of resource-availability messages 2404 processed by a com-
munications subsystem 2406, with node identifiers extracted
from the received resource-availability messages and con-
tinuously queued to a two-entry circular queue 2408. How-
ever, this implementation additionally includes two lists 2410
and 2412 and a current-list indicator 2414. At regular inter-
vals, target-node identifiers are extracted from the two-entry
circular queue 2408 and used to update entries in each of the
two lists 2410 and 2412 corresponding to the target node. In
essence, the lists store counts for each possible target node.
Over time, the counts reflect the relative frequencies of the
resource messages sent by the different possible target nodes.

Initially, the current-list indicator 2414 is set to indicate
one of the two lists .1 2410 and .2 2412. At regular intervals,
the current list, indicated by the current-list indicator, is
cleared and the current-list indicator is switched to point to
the other of the two lists. In this fashion, the counts stored in
entries of the two lists represent counts accumulated over a
recent time interval, rather than being accumulated continu-
ously from power-on or other such events. In this fashion, as
the resource capacities of various remote nodes change, those
changes are reflected within the relative counts stored in the
lists. In other words, the counts reflect the resource capacities
of remote nodes as determined over the most recent list-
switch interval.

At each update of a list entry, or at some regular interval,
the lists may be sorted. When the node wishes to select a target
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node for some operation, such as a target node for migration
of a virtual machine or for launching a new virtual machine,
the node uses the counts in the current sorted list pointed to be
the current-list indicator to select a target node having a
suitable relative resource capacity with respect to the other
nodes. For example, it may be the case that a large virtual
machine needs to be migrated, in which case the node may
select a target node with the greatest number of counts as
being the target node with greatest available capacity to
handle the large virtual machine. In other cases, a target node
within average or median resource capacity may be selected
for another type of virtual machine or for other reasons.

FIGS. 24B-D illustrate, using illustration conventions pre-
viously employed in FIGS. 18-20, changes to the implemen-
tation discussed with reference to FIG. 14 that accommodate
the additional target-node-ordering feature discussed above
with reference to FIG. 24A. FIG. 2413 shows an event loop
similar to that shown in FIG. 18. However, two more types of
events have been added to the event loop, including detection
of'a sample-timer expiration, in step 2422, and a list-switch-
timer expiration, in step 2424. The sample timer controls the
frequency for sampling the two-entry circular queue (2408 in
FIG. 24A) and the list-switch timer controls the interval for
switching the current-list indicator (2414 in FIG. 24A).

FIG. 24C shows a control-flow diagram for the sample
routine called from the event loop in step 2426 of FIG. 24B.
In step 2430, the routine “sample” retrieves a target node from
the two-entry circular queue and, in step 2432, updates a
count associated with a target node in each of the lists .1 and
L2 (2410 and 2412 in FIG. 24A, respectively). Then, in step
2434, the routine “sample” sorts the two lists. As discussed
above, this sorting may occur after each update, as in FIG.
24C, or may alternatively occur only after a set number of
updates or after expiration of a sorting timer. Finally, in step
2436, the routine “sample” sets the sample timer to expire at
a next sample-interval time point.

FIG. 24D provides a control-flow diagram for the “list
switch” routine called in step 2428 of FIG. 24B. When the
current list, as indicated by the current-list indicator (2414 in
FIG. 24A) is list L1, as determined in step 2440, then list [.1
is cleared and the current-list indicator is switched to point to
list 1.2, in step 2442. Otherwise, list 1.2 is cleared and the
current-list indicator is set to point to list L1, in step 2444. In
step 2446, the routine “list switch” sets the list-switch timer to
expire at a next list-switch interval.

FIGS. 25A-B illustrate yet an additional feature that may
be incorporated into any of the implementations so far dis-
cussed. As discussed above, the resource metric is computed
as a fraction of the total resources available within a particular
node. Thus, the resource metric value falls in the range [0,1].
However, the total resource capacities of nodes may vary. In
many cases, when selecting a target node, the selecting entity
seeks to understand the total resource capacity of a node in
order to interpret the fractional capacity based on the resource
metric determined from the frequency of resource messages
received from the node. To that end, an additional feature may
be added to each of the above-discussed implementations to
furnish the total-resource-capacity information to the nodes
within a distributed computer system.

FIG. 25A illustrates the additional feature using the illus-
tration conventions used previously in FIG. 14. As in FIG. 14,
a node 2502 receives a stream of resource-availability mes-
sages 2504 which are processed by a communications sub-
system 2506 in order to extract target-node identifiers and
place them in a two-entry circular queue 2508. In addition, in
order to implement the additional feature, the node also
receives capacity messages, or CP messages 2510, which are
processed, by the same or a different communications sub-
system 2512, to place capacity indications in a two-entry
circular queue 2514 from which the capacity information is
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processed to update entries in a capacity list 2516. The capac-
ity list 2516 includes an entry for each node from which
resource-availability messages and capacity messages are
received. The entries in the capacity list include numerical
values reflective of the total resource capacity of the remote
nodes. During target-node selection for any of various pur-
poses, a node can use the capacity information contained in
the capacity list to normalize the resource-metric information
that may be obtained by one or more of the above-discussed
methods in order to determine the total available capacity of
aremote node. For example, if, by one of the above-discussed
techniques, the node pictured in FIG. 25A can infer that the
resource metric for a target node is 0.6, then the node can
multiply this resource metric by a total-capacity value stored
in the capacity list for the target node to determine an absolute
resource capacity for that node. However, better methods
involve using CP messages to normalize broadcast frequen-
cies, as discussed below, so that the transmission frequencies
of RM messages are reflective of the actual capacities of the
transmitting nodes rather than reflective only of the fraction
of the transmitting node’s capacity that is available. In this
way, targets decide whether or not they can accommodate a
new or relocated computational task. This is more reliable
than for a node selecting a target to attempt to decide whether
or not the target can accommodate the new or relocated com-
putational task

FIG. 25B illustrates additions to the event loop of FIG. 18
to accommodate the absolute-capacity feature discussed
above with reference to FIG. 25A. A capacity-timer expira-
tion or a change in resource capacity is detected in step 2520,
which invokes a routine “capacity timer” 2522 to send out a
capacity message and reset the capacity timer. A CP-mes-
sage-received event 2524 corresponds to reception of a capac-
ity message by the node, resulting in calling of the routine
“CP message received” 2526 to process the message and
update the capacity list. In an alternative implementation, a
capacity message may be sent by a node only when the total
resource capacity of the node changes. In still alternative
embodiments, resource capacity messages may include
capacity values for each of various different resources, rather
than an overall capacity value.

The added feature discussed with reference to FIGS.
25A-B represents a decentralized scheme that provides tar-
get-node selectors with an ability to obtain an estimate of the
actual capacity of remote nodes. In an alternative implemen-
tation, resource-capacity information broadcast by the nodes
in the distributed computing environment may instead be
used, by each node, to normalize the resource metric that they
compute as a first step in determining a resource-message
broadcast frequency. As discussed above, a resource-avail-
ability metric RA, may be computed as:

B 1-9+1-P+(1-0)

RA
3

where

RA €0, 1],

where S, P, and C represent the amount of storage, processor,
and communications resources currently consumed within
this node. This metric is essentially a fraction of the total
resource capacity of a node that is currently unused. As also
discussed above, a different resource metric RM, can be com-
puted as:

RM=RA+P+Pp+P,
where Pg, Pp, and P, are penalties for resource capacity

approaching 0. Again, the resource metric RM is a modified
fraction of the total resource capacity of a node that is cur-
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rently unused. However, as discussed above, different nodes
within a distributed-computing environment may have differ-
ent resource capacities. As a result, particularly for the first-
described frequency-based target-node selection method dis-
cussed above with reference to F1G. 14, a small-capacity node
with arelatively large-valued local RA or RM metric may end
up broadcasting resource messages at a higher frequency than
a large-capacity node with a lower-valued RA or RM metric,
even though the large-capacity node may have substantially
more absolute resource availability than the smaller node. In
a worst case, the smaller-capacity node may actually have
insufficient processor bandwidth, communications band-
width, and/or data-storage capacity to accommodate launch-
ing of'a new VM or executing an already running VM, while
the large-capacity node with the lower-valued RA or RM
metric may actually have sufficient resource capacity, as a
result of which a target-node selection may end up choosing
an inadequate target node when an adequate target node is
available.

Inan alternative implementation, CP messages are used, by
each node, to obtain a local representation of the total
resource capacity available within the distributed-computing
environment. The CP messages may be broadcast by each
node, in a decentralized fashion, as discussed above, or may
instead be broadcast by a distributed-computing-environ-
ment management node or subsystem. In either case, the local
representation of the total resource capacity available within
the distributed-computing environment need not be
extremely accurate or up-to-date in order to prevent the sub-
optimal target-node selection discussed above. Even when
total-resource-capacity information for a remote node is
unavailable, the total-resource-capacity information for the
remaining remote nodes of a distributed-computing environ-
ment may often be adequate to provide a sufficient normal-
ization of the RA and RM metrics to prevent the above-
discussed suboptimal target selection.

The local representation may be a list of total-resource
capacities for the nodes of'the distributed computing environ-
ment (2516 in FIG. 25A). Using this information, the above-
discussed RA or RM metric locally computed within a node
can be globally normalized by:

101alCapacity, o,

ie{nodes}

RA=RA-

RM = RM.- toralCapacity, .poae
Y, rotalCapacity,”
ictnodes)

where the sum is over all of the nodes of the distributed-
computing environment. The frequency of transmission of
resource messages is then based on the normalized RA or RM
metric, rather than the local RA or RM. In this case, the
broadcast frequencies reflect the resource availabilities of
remote nodes with respect to the total resource capacity of the
distributed-computing environment, rather than the fraction
of local resources available. Alternatively, the CP messages
received by a node may include a fractional value ¢ represent-
ing the nodes fractional amount of resources with respect to
the distributed computing environment, as determined by a
management node or subsystem, so that the node can normal-
ize the locally computed RA or RM by:

RA=cRA

RM=cRM

The normalization is approximate, in both cases. The normal-
ized resource metrics computed at any given point in time by
all of the nodes in a distributed-computing environment do
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not necessarily add to 1.0. However, the normalization is
adequate for avoiding the suboptimal target selection based
on locally computed resource-availability metrics.

Although the present invention has been described in terms
of particular embodiments, it is not intended that the inven-
tion be limited to these embodiments. Modifications within
the spirit of the invention will be apparent to those skilled in
the art. For example, any of many different implementations
of the currently disclosed methods and systems can be
obtained by varying any of many different design and imple-
mentation parameters, including hardware platform, opera-
tion system, programming language, control structures, data
structures, modular organization, and other such design and
implementation parameters. Many different approaches may
be used to compute resource-availability metrics and to com-
pute frequency of message transmission based on the com-
puted resource-availability metric. A wide variety of different
approaches may be used for selecting target nodes based on a
stream of received RA messages, including the three different
implementations discussed above with reference to FIGS.
15-17.

It is appreciated that the previous description of the dis-
closed embodiments is provided to enable any person skilled
in the art to make or use the present disclosure. Various
modifications to these embodiments will be readily apparent
to those skilled in the art, and the generic principles defined
herein may be applied to other embodiments without depart-
ing from the spirit or scope of the disclosure. Thus, the present
disclosure is not intended to be limited to the embodiments
shown herein but s to be accorded the widest scope consistent
with the principles and novel features disclosed herein.

The invention claimed is:

1. A distributed-computing system comprising:

two or more nodes, each node including one or more pro-

cessors, one or more electronic memories, and one or
more data-storage devices;

a communications medium through which a first node

transmits messages to a second node; and
computer instructions, stored in one of the one or more
memories and executed by one of the one or more pro-
cessors within the first node that control the first node to
determine a value for a resource-availability metric,
compute a frequency from the resource-availability met-
ric, and
transmit, to the second node, messages at the computed
frequency.
2. The distributed-computing system of claim 1 wherein
the resource-availability is one of:
avalue that represents the portions of one or more compu-
tational resources within the first node available for use;

avalue that represents the portions of one or more compu-
tational resources currently used within the first node;
and

a value that represents the available computational

resources within the first node.

3. The distributed-computing system of claim 1 wherein
the frequency computed from the resource-availability metric
is proportional to the resource-availability metric.

4. The distributed-computing system of claim 1 wherein
the messages transmitted to the second node contain infor-
mation that allows the second node, upon receiving the mes-
sages, to determine which node transmitted the messages.

5. The distributed-computing system of claim 1 further
including an integral number of nodes n greater than 2.

6. The distributed-computing system of claim 5 wherein a
single receiving node receives messages sent by the remain-
ing n—1 nodes, each of the remaining n-1 nodes computing a
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frequency at which the node transmits messages to the receiv-
ing node based on a resource-availability metric.

7. The distributed-computing system of claim 5 wherein a
group of m receiving nodes receive messages sent by the
remaining n-m nodes, each of the remaining n-m nodes
computing a frequency at which the node transmits messages
to the receiving node based on a resource-availability metric.

8. The distributed-computing system of claim 5 wherein
each of the n nodes receives messages sent by the remaining
n-1 nodes and each of the of the n nodes transmits messages
to the n—1 node at a frequency computed from a resource-
availability metric computed for the node.

9. The distributed-computing system of claim 1 wherein
the first node additionally sends capacity messages to the
second node at regular intervals, indicating the first node’s
resource capacity.

10. A distributed-computing system comprising:

two or more nodes, each node including one or more pro-

cessors, one or more electronic memories, and one or
more data-storage devices;

a communications medium through which a first node

transmits messages to a second node; and

computer instructions, stored in one of the one or more

memories and executed by one of the one or more pro-

cessors within the second node that control the second

node to

receive messages from the first node, and write a node
identifier associated with each received message to a
memory buffer, and

select a target node on which to launch a new virtual
machine or executable task or to which to move a
currently executing virtual machine or executable
task by retrieving a node identifier from the memory
buffer.

11. The distributed-computing system of claim 10 wherein
the memory buffer is one of:

a circular queue with two or more entries;

a buffer with associated asynchronous reader and writer

access methods.

12. The distributed-computing system of claim 10 further
comprising:

computer instructions, stored in one of the one or more

memories and executed by one of the one or more pro-

cessors within the first node that control the first node to

determine a value for a resource-availability metric,

compute a frequency from the resource-availability met-
ric, and

transmit, to the second node, messages at the computed
frequency.

13. Computer instructions, stored in a physical computer-
instruction storage device or physical storage medium, such
as an optical or magnetic disk or an electronic memory, that,
when executed on one or more processors within a distrib-
uted-computing system comprising an integral number n
greater than 2 of nodes, each node including one or more
processors, one or more electronic memories, one or more
data-storage devices, and a communications medium through
which a one or more transmitting nodes of the n nodes trans-
mit message to one or more receiving nodes of the n nodes:

control each of the one or more transmitting nodes to

determine a value for a resource-availability metric,

compute a frequency from the resource-availability met-
ric, and

transmit messages at the computed frequency to the one
or more receiving nodes; and
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control each of the one or more receiving nodes to

receive messages from the one or more transmitting
nodes and write a node identifier associated with each
received message to a memory buffer, and

select a target node on which to launch a new virtual
machine or executable task or to which to move a
currently executing virtual machine or executable
task by retrieving a node identifier from the memory
buffer.

14. The computer instructions, stored in a physical com-
puter-instruction storage device or physical storage medium,
of claim 13 wherein the resource-availability is one of:

avalue that represents the portions of one or more compu-

tational resources within a transmitting node available
for use;

avalue that represents the portions of one or more compu-

tational resources currently used within a transmitting
node; and

a value that represents the available computational

resources within the first node.

15. The computer instructions, stored in a physical com-
puter-instruction storage device or physical storage medium,
of claim 13 wherein the computational resources include one
or more of:

data-storage capacity;

processor bandwidth;

communications bandwidth.

16. The computer instructions, stored in a physical com-
puter-instruction storage device or physical storage medium,
of claim 13 wherein the computer instructions control com-
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putation of the frequency from the resource-availability met-
ric by multiplying the resource-availability metric by a con-
stant scale factor.

17. The computer instructions, stored in a physical com-
puter-instruction storage device or physical storage medium,
of claim 13 wherein the computer instructions control com-
putation of the frequency from the resource-availability met-
ric by multiplying the inverse of the resource-availability
metric by a constant scale factor.

18. The computer instructions, stored in a physical com-
puter-instruction storage device or physical storage medium,
of claim 13 wherein the transmitted messages contain infor-
mation that allows a receiving node, upon receiving a mes-
sage, to determine which transmitting node transmitted the
message.

19. The computer instructions, stored in a physical com-
puter-instruction storage device or physical storage medium,
of claim 13 wherein the memory buffer is one of:

a circular queue with two or more entries;

a buffer with associated asynchronous reader and writer

access methods.

20. The computer instructions, stored in a physical com-
puter-instruction storage device or physical storage medium,
of claim 13 wherein the one or more transmitting nodes
represent a subgroup of the n nodes and the one or more
receiving nodes represent a subgroup of the n nodes.

21. The computer instructions, stored in a physical com-
puter-instruction storage device or physical storage medium,
of'claim 13 wherein each of the n nodes is both a transmitting
node and a receiving node.
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